The Case for Retiring Flexibility as a Major Component of Physical Fitness

Last updated: 04-15-2020

Read original article here

The Case for Retiring Flexibility as a Major Component of Physical Fitness

The Case for Retiring Flexibility as a Major Component of Physical Fitness
Sports Medicine volume 50, pages853–870(2020) Cite this article
1341 Accesses
Metrics details
Abstract
Flexibility refers to the intrinsic properties of body tissues that determine maximal joint range of motion without causing injury. For many years, flexibility has been classified by the American College of Sports Medicine as a major component of physical fitness. The notion flexibility is important for fitness has also led to the idea static stretching should be prescribed to improve flexibility. The current paper proposes flexibility be retired as a major component of physical fitness, and consequently, stretching be de-emphasized as a standard component of exercise prescriptions for most populations. First, I show flexibility has little predictive or concurrent validity with health and performance outcomes (e.g., mortality, falls, occupational performance) in apparently healthy individuals, particularly when viewed in light of the other major components of fitness (i.e., body composition, cardiovascular endurance, muscle endurance, muscle strength). Second, I explain that if flexibility requires improvement, this does not necessitate a prescription of stretching in most populations. Flexibility can be maintained or improved by exercise modalities that cause more robust health benefits than stretching (e.g., resistance training). Retirement of flexibility as a major component of physical fitness will simplify fitness batteries; save time and resources dedicated to flexibility instruction, measurement, and evaluation; and prevent erroneous conclusions about fitness status when interpreting flexibility scores. De-emphasis of stretching in exercise prescriptions will ensure stretching does not negatively impact other exercise and does not take away from time that could be allocated to training activities that have more robust health and performance benefits.
This is a preview of subscription content, log in to check access.
Access options
Instant access to the full article PDF.
US$ 49.95
Price includes VAT for USA
Subscribe to journal
Immediate online access to all issues from 2019. Subscription will auto renew annually.
US$ 199
References
1.
Holt J, Holt LE, Pelham TW. Flexibility redifined. In: Bauer T, editor. Biomechanics in Sports XIII. Thunder Bay: Lakehead University; 1996. p. 170–4.
Google Scholar
2.
Knudson DV, Magnusson P, McHugh M. Current issues in flexibility fitness. President’s Council on Physical Fitness and Sports Research Digest. 2000;3(10):1–8.
3.
Gleim GW, McHugh MP. Flexibility and its effects on sports injury and performance. Sports Med. 1997;24(5):289–99.
Google Scholar
4.
Bozic PR, Pazin NR, Berjan BB, Planic NM, Cuk ID. Evaluation of the field tests of flexibility of the lower extremity: reliability and the concurrent and factorial validity. J Strength Cond Res. 2010;24(9):2523–31.
Google Scholar
5.
Hayes K, Walton JR, Szomor ZR, Murrell GA. Reliability of five methods for assessing shoulder range of motion. Aust J Physiother. 2001;47(4):289–94.
Google Scholar
6.
Gajdosik RL, Bohannon RW. Clinical measurement of range of motion. Review of goniometry emphasizing reliability and validity. Phys Ther. 1987;67(12):1867–72.
10.
Moore ML. The measurement of joint motion; introductory review of the literature. Phys Ther Rev. 1949;29(5):195–205.
Google Scholar
11.
Wiechec FJ, Krusen FH. A new method of joint measurement and a review of the literature. Am J Surg. 1939;43(3):659–68.
12.
Institute of Medicine. Fitness measures and health outcomes in youth. Washington, D.C: The National Academic Press; 2012.
Google Scholar
13.
Morrow JR Jr, Zhu W, Franks BD, Meredith MD, Spain C. 1958–2008: 50 years of youth fitness tests in the United States. Res Q Exerc Sport. 2009;80(1):1–11.
Google Scholar
14.
American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 10th ed. Philadelphia: Wolters Kluwer; 2018.
Google Scholar
15.
Atamaz F, Ozcaldiran B, Ozdedeli S, Capaci K, Durmaz B. Interobserver and intraobserver reliability in lower-limb flexibility measurements. J Sports Med Phys Fit. 2011;51(4):689–94.
Google Scholar
16.
Ayala F, Sainz de Baranda P, De Ste Croix M, Santonja F. Criterion-related validity of four clinical tests used to measure hamstring flexibility in professional futsal players. Phys Ther Sport. 2011;12(4):175–81.
Google Scholar
31.
Kawano MM, Ambar G, Oliveira BI, Boer MC, Cardoso AP, Cardoso JR. Influence of the gastrocnemius muscle on the sit-and-reach test assessed by angular kinematic analysis. Rev Bras Fisioter. 2010;14(1):10–5.
Google Scholar
32.
Lemmink KAPM, Kemper HCG, Greef MHG, Rispens P, Stevens M. The validity of the sit-and-reach test and the modified sit-and-reach test in middle-aged to older men and women. Res Q Exerc Sport. 2003;74(3):331–6.
Google Scholar
33.
Liemohn W, Sharpe GL, Wassermann JF. Criterion related validity of the sit-and-reach test. J Strength Cond Res. 1994;8(2):91–4.
Google Scholar
34.
Liemohn W, Martin SB, Pariser GL. The effect of ankle posture on sit-and-reach test performance. J Strength Cond Res. 1997;11(4):239–41.
Google Scholar
35.
López-Miñarro PA, Andújar PS, Rodrñguez-Garcña PL. A comparison of the sit-and-reach test and the back-saver sit-and-reach test in university students. J Sports Sci Med. 2009;8(1):116–22.
Google Scholar
39.
Mier CM. Accuracy and feasibility of video analysis for assessing hamstring flexibility and validity of the sit-and-reach test. Res Q Exerc Sport. 2011;82(4):617–23.
Google Scholar
40.
Mier CM, Shapiro BS. Sex differences in pelvic and hip flexibility in men and women matched for sit-and-reach score. J Strength Cond Res. 2013;27(4):1031–5.
Google Scholar
41.
Mier CM, Shapiro BS. Reliability of a computer software angle tool for measuring spine and pelvic flexibility during the sit-and-reach test. J Strength Cond Res. 2013;27(2):501–6.
Google Scholar
42.
Minkler S, Patterson P. The validity of the modified sit-and-reach test in college-aged students. Res Q Exerc Sport. 1994;65(2):189–92.
65.
U.S Department of Health and Human Services. Physical activity guidelines for Americans. 2nd ed. Washington, D.C.; 2018.
66.
Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, American College of Sports Medicine Position Stand, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.
Google Scholar
67.
Waryasz GR, Daniels AH, Gil JA, Suric V, Eberson CP. Personal trainer demographcis, current practice trends and common trainee injuries. Orthop Rev. 2016;8(3):6600.
Google Scholar
68.
Jamtvedt G, Herbert RD, Flottorp S, Odgaard-Jensen J, Håvelsrud K, Barratt A, et al. A pragmatic randomised trial of stretching before and after physical activity to prevent injury and soreness. Br J Sports Med. 2010;44(14):1002–9.
Google Scholar
69.
Fujita Y, Nakamura Y, Hiraoka J, Kobayashi K, Sakata K, Nagai M, et al. Physical-strength tests and mortality among visitors to health-promotion centers in Japan. J Clin Epidemiol. 1995;48(11):1349–59.
Google Scholar
77.
Leong DP, Teo KK, Rangarajan S, Lopez-Jaramillo P, Avezum A Jr, Orlandini A, et al. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet. 2015;386(9990):266–73.
Google Scholar
78.
Ruiz JR, Sui X, Lobelo F, Morrow JR, Jackson AW, Sjöström M, et al. Association between muscular strength and mortality in men: prospective cohort study. BMJ. 2008;337:a439.
Google Scholar
79.
Metter EJ, Talbot LA, Schrager M, Conwit RA. Arm-cranking muscle power and arm isometric muscle strength are independent predictors of all-cause mortality in men. J Appl Physiol. 2004;96(2):814–21.
Google Scholar
80.
Bell RD, Hoshizaki TB. Relationship of age and sex with range of motion of seventeen joint actions in humans. Can J Appl Sport Sci. 1981;6(4):202–6.
Google Scholar
82.
Moreland JD, Richardson JA, Goldsmith CH, Clase CM. Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatr Soc. 2004;52(7):1121–9.
Google Scholar
83.
Chow H, Chen HL, Lin LL. Association between out-of-home trips and older adults’ functional fitness. Geriatr Gerontol Int. 2014;14:596–604.
Google Scholar
84.
Dai B, Ware WB, Giuliani CA. A structural equation model relating physical function, pain, impaired mobility (IM), and falls in older adults. Arch Gerontol Geriatr. 2012;55(3):645–52.
Google Scholar
85.
Goes SM, Leite N, Shay BL, Homann D, Stefanello JMF, Rodacki ALF. Functional capacity, muscle strength and falls in women with fibromyalgia. Clin Biomech. 2012;27(6):578–83.
Google Scholar
86.
Toraman A, Yildirim NU. The falling risk and physical fitness in older people. Arch Gerontol Geriatr. 2010;51(2):222–6.
Google Scholar
87.
Zhao Y, Chung P. Differences in function fitness among older adults with and without risk of falling. Asian Nurs Res. 2016;10(1):51–5.
Google Scholar
88.
Beissner KL, Collins JE, Holmes H. Muscle force and range of motion as predictors of function in older adults. Phys Ther. 2000;80(6):556–63.
Google Scholar
99.
Rijk JM, Roos PR, Deckx L, van den Akker M, Buntinx F. Prognostic value of handgrip strength in people aged 60 years and older: a systematic review and meta-analysis. Geriatr Gerontol Int. 2016;16(1):5–20.
Google Scholar
100.
Taekema DG, Gussekloo J, Maier AB, Westendorp RG, de Craen AJ. Handgrip strength as a predictor of functional, psychological and social health. A prospective population-based study among the oldest old. Age Ageing. 2010;39(3):33–337.
Google Scholar
101.
Wearing J, Stokes M, de Bruin ED. Quadriceps muscle strength is a discriminant predictor of dependence in daily activities in nursing home residents. PLoS One. 2019;14(9):e0223016.
Google Scholar
106.
Kwon IS, Oldaker S, Schrager M, Talbot LA, Fozard JL, Metter EJ. Relationship between muscle strength and the time taken to complete a standardized walk-turn-walk test. J Gerontol A Biol Med Sci. 2001;56(9):B398–404.
Google Scholar
107.
Muehlbauer T, Granacher U, Borde R, Hortobágyi T. Non-discriminant relationships between leg muscle strength, mass and gait performance in healthy young and old adults. Gerontology. 2018;64(1):11–8.
Google Scholar
108.
Moratalla-Cecilia N, Soriano-Maldonado A, Ruiz-Cabello P, Fernández MM, Gregorio-Arenas E, Aranda P, et al. Association of physical fitness with health-related quality of life in early postmenopause. Qual Life Res. 2016;25(10):2675–81.
Google Scholar
109.
Fowles J, Roy J, Clarke J, Dogra S. Are the fittest Canadian adults the healthiest? Health Rep. 2014;25(5):13–8.
Google Scholar
110.
Musalek C, Kirchenegast S. Grip strength as an indicator of health-related quality of life in old age—a pilot study. Int J Environ Res Public Health. 2017;14(12):E1447.
Google Scholar
111.
Sayer AA, Syddall HE, Martin HJ, Dennison EM, Roberts HC, Cooper C. Is grip strength associated with health-related quality of life? Findings from the Hertfordshire Cohort Study. Age Ageing. 2006;35(4):409–15.
Google Scholar
112.
Ozcan A, Donat H, Gelecek N, Ozdirenc M, Karadibak D. The relationship between risk factors for falling and the quality of life in older adults. BMC Public Health. 2005;5:90.
Google Scholar
122.
Grenier SG, Russell C, McGill SM. Relationships between lumbar flexibility, sit-and-reach test, and a previous history of low back discomfort in industrial workers. Can J Appl Physiol. 2003;28(2):165–77.
Google Scholar
123.
Biernacki J, Stracciolini A, Fraser J, Micheli L, Sugimoto D. Risk factors for lower-extremity injuries in female ballet dancers: a systematic review. Clin J Sports Med. 2018. https://doi.org/10.1097/JSM.0000000000000707 .
Google Scholar
124.
Coplan JA. Ballet dancer’s turnout and its relationship to self-reported injury. J Orthop Sports Phys Ther. 2002;32(11):579–84.
Google Scholar
125.
Kenny SJ, Whittaker JL, Emery CA. Risk factors for musculoskeletal injury in preprofessional dancers: a systematic review. Br J Sports Med. 2016;50(16):997–1003.
Google Scholar
126.
van Merkensteijn GG, Quin E. Assessment of compensated turnout characteristics and their relationship to injuries in university level modern dancers. J Dance Med Sci. 2015;19(2):57–62.
Google Scholar
127.
Wiesler ER, Hunter DM, Martin DF, Curl WW, Hoen H. Ankle flexibility and injury patterns in dancers. Am J Sports Med. 1996;24(6):754–7.
Google Scholar
131.
Juul-Kristensen B, Schmedling K, Rombaut L, Lund H, Engelbert RH. Measurement properties of clinical assessment methods for classifying generalized joint hypermobility—a systematic review. Am J Med Genet C Semin Med Genet. 2017;175(1):116–47.
Google Scholar
132.
Konopinski MD, Graham I, Johnson MI, Jones G. The effect of hypermobility on the incidence of injury in professional football: a multi-site cohort study. Phys Ther Sport. 2016;21:7–13.
Google Scholar
133.
Konopinski MD, Jones GJ, Johnson MI. The effect of hypermobility on the incidence of injuries in elite-level professional soccer players: a cohort study. Am J Sports Med. 2012;40(4):763–9.
Google Scholar
134.
Blokland D, Thijs KM, Backx FJ, Goedhart EA, Huisstede BM. No effect of generalized joint hypermobility on injury risk in elite female soccer players: a prospective cohort study. Am J Sports Med. 2017;45(2):286–93.
Google Scholar
135.
Nicholson LL, Chang C. No effect of generalized joint hypermobility on injury risk in elite female soccer players: letter to the editor. Am J Sports Med. 2018;46(7):NP28.
Google Scholar
136.
Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC. Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med. 2003;31(6):831–42.
Google Scholar
137.
Jones BH, Cowan DN, Tomlinson JP, Robinson JR, Polly DW, Frykman PN. Epidemiology of injuries associated with physical training among young men in the army. Med Sci Sports Exerc. 1993;25(2):197–203.
Google Scholar
140.
de la Motte SJ, Lisman P, Gribbin TC, Murphy K, Deuster PA. Systematic review of the association between physical fitness and musculoskeletal injury risk: part 3—flexibility, power, speed, balance, and agility. J Strength Cond Res. 2019;33(6):1723–35.
Google Scholar
141.
de la Motte SJ, Gribbin TC, Lisman P, Murphy K, Deuster PA. Systematic review of the association between physical fitness and musculoskeletal injury risk: part 2—muscular endurance and muscular strength. J Strength Cond Res. 2017;31(11):3218–34.
Google Scholar
142.
Lisman PJ, de la Motte SJ, Gribbin TC, Jaffin DP, Murphy K, Deuster PA. A systematic review of the association between physical fitness and musculoskeletal injury risk: part 1—cardiorespiratory endurance. J Strength Cond Res. 2017;31(6):1744–55.
Google Scholar
143.
Amoako AO, Nassim A, Keller C. Body mass index as a predictor of injuries in athletics. Curr Sports Med Rep. 2017;16(4):256–62.
Google Scholar
144.
Grant JA, Bedi A, Kurz J, Bancroft R, Gagnier JJ, Miller BS. Ability of preseason body composition and physical fitness to predict the risk of injury in male collegiate hockey players. Sports Health. 2015;7(1):45–51.
Google Scholar
145.
Nilstad A, Andersen TE, Bahr R, Holme I, Steffen K. Risk factors for lower extremity injuries in elite female soccer players. Am J Sports Med. 2014;42(4):940–8.
Google Scholar
146.
Shimozaki K, Nakase J, Takata Y, Shima Y, Kitaoka K, Tsuchiya H. Greater body mass index and hip abduction muscle strength predict noncontact anterior cruciate ligament injury in female Japanese high school basketball players. Knee Surg Sports Traumatol Arthrosc. 2018;26(10):3004–11.
Google Scholar
147.
Ryman Augustsson S, Ageberg E. Weaker lower extremity muscle strength predicts traumatic knee injury in youth female but not male athletes. BMJ Open Sport Exerc Med. 2017;3(1):e000222.
Google Scholar
148.
Green B, Bourne MN, Pizzari T. Isokinetic strength assessment offers limited predictive validity for detecting risk of future hamstring strain in sport: a systematic review and meta-analysis. Br J Sports Med. 2018;52(5):329–36.
Google Scholar
149.
Bakken A, Targett S, Bere T, Eirale C, Farooq A, Mosler AB, et al. Muscle strength is a poor screening tests for predicting lower extremity injuries in professional male soccer players: a 2-year prospective cohort study. Am J Sports Med. 2018;46(6):1481–91.
Google Scholar
150.
Nunes HEG, Alves CAS Jr, Gonçalves ECA, Silva DAS. What physical fitness component is most closely associated with adolescents’ blood pressure? Percept Mot Skills. 2017;124(6):1107–20.
Google Scholar
151.
Silva DAS, de Lima TR, Tremblay MS. Association between resting heart rate and health-related physical fitness in Brazilian adolescents. Biomed Res Int. 2018. https://doi.org/10.1155/2018/3812197 .
Google Scholar
163.
Kim JW, Seo DI, Swearingin B, So WY. Association between obesity and various parameters of physical fitness in Korean students. Obes Res Clin Pract. 2013;7(1):e67–74.
Google Scholar
164.
Michaelides MA, Parpa KM, Thompson J, Brown B. Predicting performance on a firefighter’s ability test from fitness parameters. Res Q Exerc Sport. 2008;79(4):468–75.
Google Scholar
165.
Milliken LA, Faigenbaum AD, Rita LaRosa L, Westcott WL. Correlates of upper and lower body muscular strength in children. J Strength Cond Res. 2008;22(4):1339–46.
Google Scholar
166.
Sacchetti R, Ceciliani A, Garulli A, Masotti A, Poletti G, Beltrami P, et al. Physical fitness of primary school children in relation to overweight prevalence and physical activity habits. J Sports Sci. 2012;20(7):633–40.
Google Scholar
167.
So WY, Choi DH. Differences in physical fitness and cardiovascular function depend on BMI in Korean men. J Sports Sci. 2010;9(2):239–44.
Google Scholar
168.
Smith T, Smith B, Davis M, Howell D, Servedio FJ. Predictors of physical fitness in a college sample. Percept Mot Skills. 2000;91(3):1009–10.
Google Scholar
173.
Huang HC, Nagai T, Lovalekar M, Connaboy C, Nindl BC. Physical fitness predictors of a warrior task simulation test. J Strength Cond Res. 2018;32(9):2562–8.
Google Scholar
174.
Hunt AP, Orr RM, Billing DC. Developing physical capability standards that are predictive of success on Special Forces selection courses. Mil Med. 2013;178(6):619–24.
Google Scholar
175.
Beck AQ, Clasey JL, Yates JW, Koebke NC, Palmer TG, Abel MG. Relationship of physical fitness measures vs. occupational physical ability in campus law enforcement officers. J Strength Cond Res. 2015;29(8):2340–50.
Google Scholar
176.
Sean R, Maria CL, Carra SS, Stephanie P, Thomas M, Amanda A, et al. Fit for duty? Evaluating the physical fitness requirements of battlefield airmen. Rand Health Q. 2018;7(2):8.
Google Scholar
177.
Hauschild VD, DeGroot DW, Hall SM, Grier TL, Deaver KD, Hauret KG, et al. Fitness tests and occupational tasks of military interest: a systematic review of correlations. Occup Environ Med. 2017;74(2):144–53.
Google Scholar
178.
Khan K, Roberts P, Nattrass C, Bennell K, Mayes S, Way S, et al. Hip and ankle range of motion in elite classical ballet dancers and controls. Clin J Sports Med. 1997;7(3):174–9.
Google Scholar
179.
Steinberg N, Hershkovitz I, Zeev A, Rothschild B, Siev-Ner I. Joint hypermobility and joint range of motion in young dancers. J Clin Rheumatol. 2016;22(4):171–8.
Google Scholar
180.
Steinberg N, Hershkovitz I, Peleg S, Dar G, Masharawi Y, Heim M, et al. Range of joint movement in female dancers and nondancers aged 8 to 16 years: anatomical and clinical implications. Am J Sports Med. 2006;34(5):814–23.
Google Scholar
181.
Maffulli N, King JB, Helms P. Training in élite young athletes (the Training of Young Athletes (TOYA) Study): injuries, flexibility and isometric strength. Br J Sports Med. 1994;28(2):123–6.
Google Scholar
187.
Meckel Y, Atterbom H, Grodjinovsky A, Ben-Sira D, Rotstein A. Physiological characteristics of female 100 metre sprinters of different performance levels. J Sports Med Phys Fit. 1995;35(3):169–75.
Google Scholar
188.
Maćkala K, Michalski R, Čoh M, Rausavljević N. The relationship between 200 m performance and selected anthropometric variables and motor abilities in male sprinters. Coll Antropol. 2015;39(Suppl 1):69–76.
Google Scholar
189.
Vieira F, Veiga V, Carita AL, Petroski EL. Morphological and physical fitness characteristics of under-16 Portuguese male handball players with different levels of practice. J Sports Med Phys Fit. 2013;53(2):169–76.
Google Scholar
190.
Grant S, Hynes V, Whittaker A, Aitchison T. Anthropometric, strength, endurance and flexibility characteristics of elite and recreational climbers. J Sports Sci. 1996;14(4):301–9.
Google Scholar
197.
Young WB, Pryor L. Relationship between pre-season anthropometric and fitness measures and indicators of playing performance in elite junior Australian Rules football. J Sci Med Sport. 2007;10(2):110–8.
Google Scholar
198.
Jukic I, Prnjak K, Zoellner A, Tufano JJ, Sekulic D, Salaj S. The importance of fundamental motor skills in identifying differences in performance levels of U10 soccer players. Sports. 2019;7(7):E178.
Google Scholar
199.
Fry AC, Kraemer WJ, Weseman CA, Conroy BP, Gordon SE, Hoffman JR, et al. The effects of an off-season strength and conditioning program on starters and non-starters in women’s intercollegiate volleyball. J Appl Sport Sci Res. 1991;5(4):174–81.
Google Scholar
200.
McKean MR, Burkett B. The relationship between joint range of motion, muscular strength, and race time for sub-elite flat water kayakers. J Sci Med Sport. 2010;13(5):537–42.
Google Scholar
201.
Bracko MR, George JD. Prediction of ice skating performance with off-ice testing in women’s ice hockey players. J Strength Cond Res. 2001;15(1):116–22.
Google Scholar
214.
Miyashita M, Kanehisa H. Dynamic peak torque related to age, sex, and performance. Res Q Exerc Sport. 1979;50(2):249–55.
Google Scholar
215.
Mookerjee S, Bibi K, Kenney GA, Cohen L. Relationship between isokinetic strength, flexibility, and flutter kicking speed in collegiate swimmers. J Strength Cond Res. 1995;9(2):71–4.
Google Scholar
216.
Willems TM, Cornelis JA, De Deurwaerder LE, Roelandt F, De Mits S. The effect of ankle muscle strength and flexibility on dolphin kick performance in competitive. Hum Mov Sci. 2014;36:167–76.
Google Scholar
217.
Hadjicharalambous M. The effects of regular supplementary flexibility training on physical fitness performance of young high-level soccer players. J Sports Med Phys Fit. 2016;56(6):699–708.
Google Scholar
218.
Kamandulis S, Emeljanovas A, Skurvydas A. Stretching exercise volume for flexibility enhancement in secondary school children. J Sports Med Phys Fit. 2013;53(6):687–92.
Google Scholar
219.
Kokkonen J, Nelson AG, Eldredge C, Winchester JB. Chronic static stretching improves exercise performance. Med Sci Sports Exerc. 2007;39(10):1825–31.
Google Scholar
220.
Mayorga-Vega D, Merino-Marban R, Real J, Viciana J. A physical education-based stretching program performed once a week also improves hamstring extensibility in schoolchildren: a cluster-randomized controlled trial. Nutr Hosp. 2015;32(4):1715–21.
Google Scholar
221.
Mayorga-Vega D, Merino-Marban R, Manzano-Lagunas J, Blanco H, Viciana J. Effects of a stretching development and maintenance program on hamstring extensibility in schoolchildren: a cluster-randomized controlled trial. J Sports Sci Med. 2016;15(1):65–74.
Google Scholar
223.
Rodriguez Fernandez A, Sanchez J, Rodriguez-Marroyo JA, Villa JG. Effects of seven weeks of static hamstring stretching on flexibility and sprint performance in young soccer players according to their playing position. J Sports Med Phys Fit. 2016;56(4):345–51.
Google Scholar
224.
Simao R, Lemos A, Salles B, Leite T, Oliviera E, Rhea M, et al. The influence of strength, flexibility, and simultaneous training on flexibility and strength gains. J Strength Cond Res. 2011;25(5):1333–8.
Google Scholar
225.
Wong A, Figueroa A. Eight weeks of stretching training reduces aortic wave reflection magnitude and blood pressure in obese postmenopausal women. J Hum Hypertens. 2014;28(4):246–50.
Google Scholar
227.
Chang SP, Hong Y, Robinson PD. Flexibility and passive resistance of the hamstrings of young adults using two different static stretching protocols. Scand J Med Sci Sports. 2001;11(2):81–6.
Google Scholar
228.
Cipriani DJ, Abel B, Pirrwitz D. A comparison of two stretching protocols on hip range of motion: implications for total daily stretch duration. J Strength Cond Res. 2003;17(2):274–8.
Google Scholar
229.
Cipriani DJ, Terry ME, Haines MA, Tabibnia AP, Lyssanova O. Effect of stretch frequency and sex on the rate of gain and rate of loss in muscle flexibility during a hamstring-stretching program: a randomized single-blind longitudinal study. J Strength Cond Res. 2012;26(8):2119–29.
Google Scholar
230.
de Baranda PS, Ayala F. Chronic flexibility improvement after 12 week of stretching program utilizing the ACSM recommendations: hamstring flexibility. Int J Sports Med. 2010;31:389–96.
Google Scholar
231.
Donti Ο, Papia K, Toubekis A, Donti A, Sands WA, Bogdanis GC. Flexibility training in preadolescent female athletes: acute and long-term effects of intermittent and continuous static stretching. J Sports Sci. 2018;36(13):1453–60.
Google Scholar
232.
Feland JB, Myrer JW, Schulthies SS, Fellingham GW, Measom GW. The effect of duration of stretching of the hamstring muscle group for increasing range of motion in people aged 65 years or older. Phys Ther. 2001;81(5):1110–7.
Google Scholar
235.
Guissard N, Duchateau J. Effect of static stretch training on neural and mechanical properties of the human plantar-flexor muscles. Muscle Nerve. 2004;29(2):248–55.
Google Scholar
236.
Harvey LA, Herbert R, Crosbie J. Does stretching induce lasting increases in joint ROM? A systematic review. Physiother Res Int. 2002;7(1):1–13.
Google Scholar
237.
Medeiros DM, Martini TF. Chronic effect of different types of stretching on ankle dorsiflexion range of motion: systematic review and meta-analysis. Foot. 2018;34:28–35.
Google Scholar
238.
Nelson RT. Eccentric training and static stretching improve hamstring flexibility of high school males. J Athl Train. 2004;39(3):254–8.
Google Scholar
245.
Kubo K, Kanehisa H, Fukunaga T. Effect of stretching training on the viscoelastic properties of human tendon structures in vivo. J Appl Physiol. 2002;92(2):595–601.
Google Scholar
246.
Shrier I. Stretching before exercise does not reduce the risk of local muscle injury: a critical review of the clinical and basic science literature. Clin J Sports Med. 1999;9(4):221–7.
Google Scholar
247.
Weppler CH, Magnusson SP. Increasing muscle extensibility: a matter of increasing length or modifying sensation? Phys Ther. 2010;90(3):438–49.
Google Scholar
248.
Adams KJ, Swank AM, Berning JM, Sevene-Adams PG, Barnard KL, Shimp-Bowerman J. Progressive strength training in sedentary, older African American women. Med Sci Sports Exerc. 2001;33(9):1567–76.
Google Scholar
251.
Fatouros IG, Kambas A, Katrabasas I, Leontsini D, Chatzinikolaou A, Jamurtas AZ, et al. Resistance training and detraining effects on flexibility performance in the elderly are intensity-dependent. J Strength Cond Res. 2006;20(3):634–42.
Google Scholar
252.
Faigenbaum AD, McFarland JE, Johnson L, Kang J, Bloom J, Ratamess NA, et al. Preliminary evaluation of an after-school resistance training program for improving physical fitness in middle school-age boys. Percept Mot Skills. 2007;104(2):407–15.
Google Scholar
253.
Junior RS, Leite T, Reis VM. Influence of the number of sets at a strength training in the flexibility gains. J Hum Kinet. 2011;29A:47–52.
Google Scholar
257.
Nobrega ACL, Puala KC, Carvalho ACG. Interaction between resistance training and flexibility training in healthy adults. J Strength Cond Res. 2005;19(4):842–6.
Google Scholar
258.
Monteiro WD, Simão R, Polito MD, Santana CA, Chaves RB, Bezerra E, et al. Influence of strength training on adult women’s flexibility. J Strength Cond Res. 2008;22(3):672–7.
Google Scholar
259.
Morton SK, Whitehead JR, Brinkert RH, Caine DJ. Resistance training vs static stretching: effects on flexibility and strength. J Strength Cond Res. 2011;25(12):3391–8.
Google Scholar
260.
Ribeiro AS, Campos-Filho MGA, Ademar A, dos Santos L, Junior AA, Aguiar AF, et al. Effect of resistance training on flexibility in young adult men and women. Isokinet Exerc Sci. 2017;25(2):149–55.
Google Scholar
261.
Santos E, Rhea MR, Simão R, Dias I, de Salles BF, Novaes J, et al. Influence of moderately intense strength training on flexibility in sedentary young women. J Strength Cond Res. 2010;24(11):3144–9.
Google Scholar
262.
Ades PA, Savage P, Cress ME, Brochu M, Lee NM, Poehlman ET. Resistance training on physical performance in disabled older female cardiac patients. Med Sci Sports Exerc. 2003;35(8):1265–70.
Google Scholar
263.
Bates A, Donaldson A, Lloyd B, Castell S, Krolik P, Coleman R. Staying active, staying strong: pilot evaluation of a once-weekly, community-based strength training program for older adults. Health Promot J Aust. 2009;20(1):42–7.
Google Scholar
264.
Kim E, Dear A, Ferguson SL, Seo D, Bemben MG. Effects of 4 weeks of traditional resistance training vs. superslow strength training on early phase adaptations in strength, flexibility, and aerobic capacity in college-aged women. J Strength Cond Res. 2011;25(11):3006–13.
Google Scholar
265.
Magnani Branco BH, Carvalho IZ, Garcia de Oliveira H, Fanhani AP, Machado Dos Santos MC, Pestillo de Oliveira L, et al. Effects of 2 types of resistance training models on obese adolescents’ body composition, cardiometabolic risk, and physical fitness. J Strength Cond Res. 2018. https://doi.org/10.1519/JSC.0000000000002877 .
Google Scholar
272.
Shigematsu R, Okura T. A novel exercise for improving lower-extremity functional fitness in the elderly. Aging Clin Exp Res. 2006;18(3):242–8.
Google Scholar
273.
Shigematsu R, Okura T, Sakai T, Rantanen T. Square-stepping exercise versus strength and balance training for fall risk factors. Aging Clin Exp Res. 2008;20(1):19–24.
Google Scholar
274.
Whitehurst MA, Johnson BL, Parker CM, Brown LE, Ford AM. The benefits of a functional exercise circuit for older adults. J Strength Cond Res. 2005;19(3):647–51.
Google Scholar
275.
Takeshima N, Rogers NL, Rogers ME, Islam MM, Koizumi D, Lee S. Functional fitness gain varies in older adults depending on exercise mode. Med Sci Sports Exerc. 2007;39(11):2036–43.
Google Scholar
276.
Christiansen CL. The effects of hip and ankle stretching on gait function of older people. Arch Phys Med Rehabil. 2008;89(8):1421–8.
Google Scholar
277.
Cortez-Cooper MY, Anton MM, Devan AE, Neidre DB, Cook JN, Tanaka H. The effects of strength training on central arterial compliance in middle-aged and older adults. Eur J Cardiovasc Prev Rehabil. 2008;15(2):149–55.
Google Scholar
278.
Kruse NT, Scheuermann BW. Cardiovascular responses to skeletal muscle stretching: “stretching” the truth or a new exercise paradigm for cardiovascular medicine? Sports Med. 2017;47(12):2507–20.
Google Scholar
279.
de Resende-Neto AG, Oliveira Andrade BC, Cyrino ES, Behm DG, De-Santana JM, Da Silva-Grigoletto ME. Effects of functional and traditional training in body composition and muscle strength components in older women: A randomized controlled trial. Arch Gerontol Geriatr. 2019. https://doi.org/10.1016/j.archger.2019.103902 .
Google Scholar
287.
Westcott WL. Resistance training is medicine: effects of strength training on health. Curr Sports Med Rep. 2012;11(4):209–16.
Google Scholar
288.
Herbert RD, de Noronha M, Kamper SJ. Stretching to prevent or reduce muscle soreness after exercise. Cochrane Database Syst Rev. 2011;7:CD004577.
Google Scholar
289.
Herbert RD, Gabriel M. Effects of stretching before and after exercising on muscle soreness and risk of injury: systematic review. BMJ. 2002;325(7362):451–2.
Google Scholar
290.
Pope R, Herbert R, Kirwan J. Effects of ankle dorsiflexion range and pre-exercise calf muscle stretching on injury risk in Army recruits. Aust J Physiother. 1998;44(3):165–72.
Google Scholar
291.
Pope RP, Herbert RD, Kirwan JD, Graham BJ. A randomized trial of preexercise stretching for prevention of lower-limb injury. Med Sci Sports Exerc. 2000;32(2):271–7.
Google Scholar
292.
Yeung SS, Yeung EW, Gillespie LD. Interventions for preventing lower limb soft-tissue running injuries. Cochrane Database Syst Rev. 2011;7:CD001256.
Google Scholar
293.
Lauersen JB, Bertelsen DM, Andersen LB. The effectiveness of exercise interventions to prevent sports injuries: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2014;48(11):871–7.
Google Scholar
294.
Thacker SB, Gilchrist J, Stroup DF, Kimsey CD Jr. The impact of stretching on sports injury risk: a systematic review of the literature. Med Sci Sports Exerc. 2004;36(3):371–8.
Google Scholar
295.
McHugh MP, Cosgrave CH. To stretch or not to stretch: the role of stretching in injury prevention and performance. Scand J Med Sci Sports. 2010;20(2):169–81.
Google Scholar
296.
Gross A, Kay TM, Paquin JP, Blanchette S, Lalonde P, Christie T, et al. Exercises for mechanical neck disorders. Cochrane Database Syst Rev. 2015;1:CD004250.
Google Scholar
297.
Lin CW, Donkers NA, Refshauge KM, Beckenkamp PR, Khera K, Moseley AM. Rehabilitation for ankle fractures in adults. Cochrane Database Syst Rev. 2012;11:CD005595.
Google Scholar
298.
Kim SY, Busch AJ, Overend TJ, Schachter CL, van der Spuy I, Boden C, et al. Flexibility exercise training for adults with fibromyalgia. Cochrane Database Syst Rev. 2019;9:CD013419.
Google Scholar
299.
Busch AJ, Webber SC, Richards RS, Bidonde J, Schachter CL, Schafer LA, et al. Resistance exercise training for fibromyalgia. Cochrane Database Syst Rev. 2013;12:CD010884.
Google Scholar
300.
Morrow JR, Ede A. Statewide physical fitness testing: a big waist or a big waste? Res Q Exerc Sport. 2009;80(4):696–701.
Google Scholar
301.
Bobo M, Yarbrough M. The effects of long-term aerobic dance on agility and flexibility. J Sports Med Phys Fit. 1999;39(2):165–8.
302.
Scott PA. Morphological characteristics of elite male field hockey players. J Sports Med Phys Fit. 1991;31(1):57–61.
Google Scholar
303.
Kay AD, Blazevich AJ. Effect of acute static stretch on maximal muscle performance: a systematic review. Med Sci Sports Exerc. 2012;44(1):154–64.
Google Scholar
304.
Barroso R, Tricoli V, Santos Gil SD, Ugrinowitsch C, Roschel H. Maximal strength, number of repetitions, and total volume are differently affected by static-, ballistic-, and proprioceptive neuromuscular facilitation stretching. J Strength Cond Res. 2012;26(9):2432–7.
Google Scholar
305.
Nelson AG, Kokkonen J, Arnall DA. Acute muscle stretching inhibits muscle strength endurance performance. J Strength Cond Res. 2005;19(2):338–43.
Google Scholar
306.
Junior RM, Berton R, de Souza TM, Chacon-Mikahil MP, Cavaglieri CR. Effect of the flexibility training performed immediately before resistance training on muscle hypertrophy, maximum strength and flexibility. Eur J Appl Physiol. 2017;117(4):767–74.
Google Scholar
307.
Ferreira-Júnior JB, Benine RPC, Chaves SFN, Borba DA, Martins-Costa HC, Freitas EDS, et al. Effects of static and dynamic stretching performed before resistance training on muscle adaptations in untrained men. J Strength Cond Res. 2019. https://doi.org/10.1519/JSC.0000000000003283 .


Read the rest of this article here